Archive for January 2020

NGC 1931 – Bright Nebula and Cluster in Auriga: February 2020 Observer’s Challenge Report

January 23, 2020

 

MONTHLY OBSERVER’S CHALLENGE

Compiled by:

Roger Ivester, North Carolina

&

Sue French, New York

February 2020

Report #133

NGC 1931 Bright Nebula and Cluster in Auriga 

Sharing Observations and Bringing Amateur Astronomers Together

Introduction

     The purpose of the Observer’s Challenge is to encourage the pursuit of visual observing. It’s open to everyone who’s interested, and if you’re able to contribute notes, and/or drawings, we’ll be happy to include them in our monthly summary. Visual astronomy depends on what’s seen through the eyepiece. Not only does it satisfy an innate curiosity, but it allows the visual observer to discover the beauty and the wonderment of the night sky. Before photography, all observations depended on what astronomers saw in the eyepiece, and how they recorded their observations. This was done through notes and drawings, and that’s the tradition we’re stressing in the Observer’s Challenge. And for folks with an interest in astrophotography, your digital images and notes are just as welcome. The hope is that you’ll read through these reports and become inspired to take more time at the eyepiece, study each object, and look for those subtle details that you might never have noticed before.

 

February:  NGC 1931 – Bright  Nebula and Cluster – Auriga; Mag. V= 10.1;  Size 6′ 

RA:  05h  31m   Dec.  +34º  14′ 

 

The embedded Stars in NGC 1931 by Sue French:   

     Don’t be surprised about not seeing the stars in NGC 1931.  Folks get very mixed results.  Go to http://www.deepsky-archive.com/ and type NGC 1931 in the Designation box, then look at everyone’s sketches.  

     Here’s a long-ago Amastro post from Brian Skiff that gives the magnitudes of the trapezium system embedded in the brightest part of the nebula.  I see one of these stars, or a blend of them, in the 105mm scope.  The 10-inch at 213× gives me six stars in the brightest part of the nebulosity plus several mag 11-13½ stars scattered to the south.  I’ve pasted an image below Brian’s data and labeled the stars on it.  The image is in infrared so that the nebulosity doesn’t blot out the stars. Below the Aladin image is a WEBDA chart showing which stars I saw in the main group through the 10-inch..

     While cleaning up some star-lists, I collected data for stars in the nebulous open cluster NGC 1931 in Auriga.  The group contains a faint trapezium system, ADS 4112, that might be of interest to ‘amastro’ folks. The specs for the group are shown below.  The V magnitudes for the stars come from modern photoelectric or CCD studies.  The separations derive from positions in the 2MASS catalogue, which should be better than the 100-year-old visual micrometry, but which in any case match the old data to within a few tenths of an arcsecond. The brighter trio is straightforward in a small telescope; in 1989 I was able to make out the fourth ‘E’ component very faintly in my 6-inch refractor at 200x.  The very faint, close ‘D’ companion to star ‘B’ doubtless requires a very large aperture.  The data quoted for it is from S. W. Burnham’s work; the magnitude is possibly too bright.  The 2MASS coordinates are listed at the bottom.  Star ‘D’ does not appear in any astrometric catalogue.  The spectral types for the three brightest stars, by the way, are B0V, B0.5V, and B1V.  Thus the object should contain some emission, although there must be a substantial reflection component, since filters do not provide much contrast enhancement.

\Brian

 ————————————————

ADS 4112 = BD+34 1074:  5 31 27  +34 14.9 (2000)

 

     V mags      sep    pa

AB  11.5,12.3    8″.1  239

AC       13.0   10″.5  310

AE       14.0   14″.6   17

BD      (15.8)   2″.3  322

 

      RA   (2000)   Dec

A   5 31 27.08  +34 14 49.6

B   5 31 26.54  +34 14 45.0

C   5 31 26.43  +34 14 56.3

E   5 31 27.50  +34 15 03.2

 

fullsizeoutput_1235

fullsizeoutput_1236

Mario Motta:  Observer from Massachusetts 

See attached image of NGC 1931, for the February 2020 Observer’s Challenge report.  

Taken with my 32-inch telescope, and SBIG STL 1001E camera.  One hour of H alpha, one hour of Sulfur S2 filters, and only 20 minutes of O3 filter as there was essentially no Oxygen signal.

Processed in PixInsight.

NGC1931

NGC 1999 – Reflection Nebula With Hole: January 2020 – Observer’s Challenge Report

January 23, 2020

rogerivester

MONTHLY OBSERVER’S CHALLENGE

Compiled by:

Roger Ivester, North Carolina

&

Sue French, New York

January 2020

Report #132

NGC 1999 Reflection Nebula in Orion

Sharing Observations and Bringing Amateur Astronomers Together

Introduction

The purpose of the Observer’s Challenge is to encourage the pursuit of visual observing. It’s open to everyone who’s interested, and if you’re able to contribute notes, and/or drawings, we’ll be happy to include them in our monthly summary. Visual astronomy depends on what’s seen through the eyepiece. Not only does it satisfy an innate curiosity, but it allows the visual observer to discover the beauty and the wonderment of the night sky. Before photography, all observations depended on what astronomers saw in the eyepiece, and how they recorded their observations. This was done through notes and drawings, and that’s the tradition we’re stressing in the Observer’s Challenge. And for folks with an interest in astrophotography, your digital…

View original post 1,117 more words

Building a Hot Rod in November 1964: The Beatles Came to America in February of That Year, Cassius Clay Wins the Heavy-Weight Boxing Championship Over Sonny Liston. And I was Eleven Years Old…

January 15, 2020

Date:  November 1964  

     My five older brothers built something similar or akin to what might be called a Rat Rod today.  The origin was a 1951 Studebaker…using the frame (which had been shortened by three feet), engine, and other parts. 

       In the following photos are my brother Jimmy, who was driving, I’m in the middle with the “cool” cowboy hat, and my brother, Phillip.

     My older brothers, Richard, Jimmy, Ronny, Donnie and Phillip, worked on fabricating “The Bug” as it was called.   I was a bit too young, and mostly just enjoyed watching.  Sometimes I would assist by handing them wrenches or anything else they might need.   

     Improvements were made over the next year with the installation of a mid-50’s Chrysler Hemi engine, which had much more horsepower than the Studebaker.     

     The sad looking tires, especially the front white-walls would eventually be changed out with some better looking wheels.  Additions would also be made to the body, however, still constructed of wood panels.  With a larger budget, many improvements could have been made, but….

     My brother, Donnie, being in high school drove the school bus in the background, which was an early 1950’s model Chevrolet.  

An astronomical telescope purchase in 1963:    

     It was my brother Jimmy, who had already purchased (at the time of the photo) a 60mm f/15 equatorially mounted refractor from Sears, at a cost of $100.  This would be the equivalent of $835 in 2019.  An expensive telescope for sure.

     Two years later, I would begin using this telescope to observe deep-sky objects (galaxies, nebulae, and star clusters) and a lifelong interest in astronomy would follow, even to this day.

Roger Ivester   

The Beginning of a Hot Rod

The Beginning of a Hot Rod - 2

  Now going to the future and current:     

     As time progressed, and with an improved budget, greater skills and abilities, my brother Phillip would become a race car and engine builder.  He would also go on to win an incredible 164 drag racing events, over a thirty year period.  

The following photo was made in September 2019:     

Race Car Wheeley

 

     Phillip still has two race cars, and continues to race this car, as well as his second “almost” identical car, and will race again in 2020.      

IMG_0031

 

IMG_3871

 

 

 

The Three Types of Astronomical Deep-Sky Sketches Identified and Explained

January 5, 2020

rogerivester

     Recently it occurred to me, there is not a definitive identification of the various types of deep-sky sketching techniques.  It’s my opinion, there are basically three types of sketches, but as of current, have never been identified or named.    

     I would like to recommend or propose to the amateur astronomy community, that this identification of deep-sky sketches be considered as a standard for all future discussions and for proper identification, concerning deep-sky drawings.      

     Detailed visual telescope sketching:  Observing an object through a telescope via an eyepiece. Drawing the object on paper or a sketch card “as verbatim” as possible using a pencil, or pencils of various hardness or other.   

     I’m a visual back yard observer with more than forty years of experience.  All of my sketches are made using a pencil and a 5 x 8…

View original post 261 more words

Cline Observatory Double Star List – Compiled By Tom English; Consisting of 25 Doubles and 5 Triples

January 3, 2020

rogerivester

Cline Observatory Double Star List – 25double-5triple

Tom English has put together an excellent list of twenty five doubles and five  multiple stars, which at first glance would seem to be compiled for only those new to this facet of amateur astronomy.  However, for those of us who have enjoyed double star observing for decades, we know there is no such thing as a beginners list.

Double star lists can be comprised of the most difficult pairs due to their close separations and sometimes with unequal magnitudes, or those with wide separations and beautiful contrasting colors.  It was the latter which coined the name: “The jewels of the night sky.”

This list contains some beautiful and interesting doubles, all of which can be observed with a small telescope.  

The famous double star, Epsilon Bootis is probably the most difficult double on the list, which has always required a 4-inch aperture…

View original post 169 more words